You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

519 lines
16 KiB

5 years ago
#include "model/algorithms/ScanConversionAlg.h"
#include <QtMath>
void ScanConversionAlg::linear(Input_t params, QVector<float> &scanXPos, QVector<float> &scanZPos,
QVector<float> &gridPixelXPos, QVector<float> &gridPixelZPos)
{
//just to map to X Z convention
auto frameMaxXScan = params.bMaxScanAz;
auto frameMinXScan = params.bMinScanAz;
auto frameMaxZScan = params.bMaxScanAx;
auto frameMinZScan = params.bMinScanAx;
auto finalPixelXNo = params.outputWidth;
auto finalPixelZNo = params.outputHeight;
auto pixelXStep = (frameMaxXScan - frameMinXScan) / (finalPixelXNo - 1);
auto pixelZStep = (frameMaxZScan - frameMinZScan) / (finalPixelZNo - 1);
gridPixelXPos.reserve(finalPixelXNo * finalPixelZNo);
gridPixelZPos.reserve(finalPixelXNo * finalPixelZNo);
auto cap = gridPixelXPos.capacity();
for(auto i = 0UL; i < finalPixelZNo; i++)
{
auto temp = frameMinZScan + i * pixelZStep;
for(auto j = 0UL; j < finalPixelXNo; j++)
{
gridPixelZPos.push_back(temp / cosf(params.steering));
gridPixelXPos.push_back((frameMinXScan + j * pixelXStep) -
(temp * tanf(params.steering)));
}
}
for(auto i = 0; i < params.rxLineNo; i++)
{
scanXPos.push_back(params.minScanAz + i * params.rxLineDaz);
}
for(auto i = 0; i < params.rxFocusPointNo; i++)
{
scanZPos.push_back(params.minScanAx + i * params.rxPointDax);
}
}
/*************************************************************************************************/
void ScanConversionAlg::virtualConvex(Input_t params, QVector<float>& scanXPos,
QVector<float>& scanZPos, QVector<float>& gridPixelXPos,
QVector<float>& gridPixelZPos)
{
auto finalPixelXNo = params.outputWidth;
auto finalPixelZNo = params.outputHeight;
auto minAbsScanAz = 0.0f;
if (params.bMaxScanAz > 0 && params.bMinScanAz < 0)
{
minAbsScanAz = 0;
}
else
{
minAbsScanAz = qMin(abs(params.bMinScanAz), abs(params.bMaxScanAz));
}
auto maxAbsScanAz = qMax(abs(params.bMinScanAz), abs(params.bMaxScanAz));
auto frameMaxZScan = params.bMaxScanAx *
cosf(minAbsScanAz / params.fieldOfView * 2 * params.vcMaxTheta);
auto frameMinZScan = params.bMinScanAx *
cosf(maxAbsScanAz / params.fieldOfView * 2 * params.vcMaxTheta);
auto frameMaxXScan = params.bMaxScanAz + params.bMaxScanAx *
sinf(params.bMaxScanAz / params.fieldOfView * 2 * params.vcMaxTheta);
auto frameMinXScan = params.bMinScanAz + params.bMaxScanAx *
sinf(params.bMinScanAz / params.fieldOfView * 2 * params.vcMaxTheta);
auto pixelXStep = (frameMaxXScan - frameMinXScan) / (finalPixelXNo - 1);
auto pixelZStep = (frameMaxZScan - frameMinZScan) / (finalPixelZNo - 1);
auto pixelXPos = QVector<float>();
auto pixelZPos = QVector<float>();
pixelXPos.reserve(finalPixelXNo * finalPixelZNo);
pixelZPos.reserve(finalPixelXNo * finalPixelZNo);
for(auto i = 0UL; i < finalPixelZNo; i++)
{
for(auto j = 0UL; j < finalPixelXNo; j++)
{
pixelZPos.push_back(frameMinZScan + i * pixelZStep);
pixelXPos.push_back(frameMinXScan + j * pixelXStep);
}
}
virtualScanConversion(pixelXPos, pixelZPos, finalPixelXNo, finalPixelZNo, params.steering,
params.virtualOriginalZ, params.startDepth, params.depth,
params.vcMaxTheta, gridPixelZPos, gridPixelXPos);
//scanTheta
for(auto i = 0; i < params.rxLineNo; i++)
{
scanXPos.push_back(params.minScanAz + i * params.rxLineDaz);
}
//scanR
for(auto i = 0; i < params.rxFocusPointNo; i++)
{
scanZPos.push_back(params.minScanAx + i * params.rxPointDax);
}
}
/*************************************************************************************************/
void ScanConversionAlg::convex(Input_t params, QVector<float>& scanXPos, QVector<float>& scanZPos,
QVector<float>& gridPixelXPos, QVector<float>& gridPixelZPos)
{
auto finalPixelXNo = params.outputWidth;
auto finalPixelZNo = params.outputHeight;
auto frameMaxXScan = params.probe.radius * sinf(params.bMaxScanAz) +
params.bMaxScanAx * sinf(params.bMaxScanAz / params.fieldOfView * params.angle);
auto frameMinXScan = params.probe.radius * sinf(params.bMinScanAz) +
params.bMaxScanAx * sinf(params.bMinScanAz / params.fieldOfView * params.angle);
auto minAbsScanAz = 0.0f;
if (params.bMaxScanAz > 0 && params.bMinScanAz < 0)
{
minAbsScanAz = 0;
}
else
{
minAbsScanAz = qMin(abs(params.bMinScanAz), abs(params.bMaxScanAz));
}
auto maxAbsScanAz = qMax(abs(params.bMinScanAz), abs(params.bMaxScanAz));
auto frameMaxZScan = params.probe.radius * cosf(minAbsScanAz) +
params.bMaxScanAx * cosf(minAbsScanAz / params.fieldOfView * params.angle);
auto frameMinZScan = params.probe.radius * cosf(maxAbsScanAz) +
params.bMinScanAx * cosf(maxAbsScanAz / params.fieldOfView * params.angle);
auto pixelXStep = (frameMaxXScan - frameMinXScan) / (finalPixelXNo - 1);
auto pixelZStep = (frameMaxZScan - frameMinZScan) / (finalPixelZNo - 1);
auto pixelXPos = QVector<float>();
auto pixelZPos = QVector<float>();
pixelXPos.reserve(finalPixelXNo * finalPixelZNo);
pixelZPos.reserve(finalPixelXNo * finalPixelZNo);
for(auto i = 0UL; i < finalPixelZNo; i++)
{
for(auto j = 0UL; j < finalPixelXNo; j++)
{
pixelZPos.push_back(frameMinZScan + i * pixelZStep);
pixelXPos.push_back(frameMinXScan + j * pixelXStep);
}
}
convexScanConversion(pixelXPos, pixelZPos, finalPixelXNo, finalPixelZNo, params.steering,
params.angle, params.fieldOfView, params.probe.radius, params.startDepth,
params.depth, gridPixelZPos, gridPixelXPos);
//scanTheta
for(auto i = 0; i < params.rxLineNo; i++)
{
scanXPos.push_back(params.minScanAz + i * params.rxLineDaz + params.probe.radius);
}
//scanR
for(auto i = 0; i < params.rxFocusPointNo; i++)
{
scanZPos.push_back(params.minScanAx + i * params.rxPointDax);
}
}
/*************************************************************************************************/
void ScanConversionAlg::scanConversion(Input_t params, QVector<float>& scanXPos,
QVector<float>& scanZPos, QVector<float>& gridPixelXPos,
QVector<float>& gridPixelZPos)
{
//convex
if(!params.probe.linear)
{
convex(params, scanXPos, scanZPos, gridPixelXPos, gridPixelZPos);
}
//virtual convex
else if(params.virtualConvex)
{
virtualConvex(params, scanXPos, scanZPos, gridPixelXPos, gridPixelZPos);
}
//linear
else
{
linear(params, scanXPos, scanZPos, gridPixelXPos, gridPixelZPos);
}
}
/*************************************************************************************************/
void ScanConversionAlg::virtualScanConversion(QVector<float> pixelXPos, QVector<float> pixelZPos,
uint width, uint height, float steering,
float virtualOriginalZ, float startDepth, float depth,
float vcMaxTheta, QVector<float>& gridPixelR,
QVector<float>& gridPixelTheta)
{
for(auto i = 0U; i < width * height; i++)
{
auto x = pixelXPos[i];
auto z = pixelZPos[i];
auto pixelTheta = atanf(x / (z + virtualOriginalZ));
if(pixelTheta >= -vcMaxTheta - abs(steering) &&
pixelTheta <= vcMaxTheta + abs(steering))
{
if(steering == 0.0f)
{
auto gridPixelAx = sqrtf(powf(x - virtualOriginalZ * tanf(pixelTheta), 2) +
powf(z, 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(gridPixelAx);
gridPixelTheta.push_back(pixelTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
else
{
auto strTan = tanf(steering);
auto a = virtualOriginalZ * strTan;
auto b = x * strTan + virtualOriginalZ + z;
auto c = x - z * strTan;
auto interceptTheta = atanf((b + sqrtf(powf(b, 2) - 4 * a * c)) / (2 * a));
if(interceptTheta > vcMaxTheta || interceptTheta < -vcMaxTheta)
{
interceptTheta = atanf((b - sqrtf(powf(b, 2) - 4 * a * c)) / (2 * a));
if(interceptTheta > vcMaxTheta || interceptTheta < -vcMaxTheta)
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
else
{
auto gridPixelAx =
sqrtf(powf(x - virtualOriginalZ * tanf(interceptTheta), 2) +
powf(z, 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
else
{
auto gridPixelAx =
sqrtf(powf(x - virtualOriginalZ * tanf(interceptTheta), 2) +
powf(z, 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}//steering = 0
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
/*************************************************************************************************/
void ScanConversionAlg::convexScanConversion(QVector<float> pixelXPos, QVector<float> pixelZPos,
uint width, uint height, float steering, float angle,
float fieldOfView, float probeRadius, float startDepth,
float depth, QVector<float>& gridPixelR,
QVector<float>& gridPixelTheta)
{
auto virtualOriginalZ = probeRadius *
(cosf(fieldOfView / 2) - sinf(fieldOfView / 2) / tanf(angle / 2));
auto virtualOriginalZ2 = powf(virtualOriginalZ, 2);
auto maxR = probeRadius + depth;
auto minR = probeRadius - virtualOriginalZ + startDepth;
auto minTheta = -angle / 2 - abs(steering);
auto maxTheta = angle / 2 + abs(steering);
auto maxInterceptTheta = fieldOfView / 2;
auto radius2 = powf(probeRadius, 2);
if(steering == 0.0f)
{
for (auto i = 0U; i < width * height; i++)
{
auto x = pixelXPos[i];
auto z = pixelZPos[i];
auto pixelTheta = atan2f(x, z - virtualOriginalZ);
auto pixelR = sqrtf(powf(x, 2) + powf(z - virtualOriginalZ, 2));
if(pixelR >= minR && pixelR <= maxR && pixelTheta >= minTheta && pixelTheta <= maxTheta)
{
auto interceptTheta = 0.0f;
auto interceptX = 0.0f;
auto interceptZ = 0.0f;
auto alpha = 0.0f;
auto beta = 0.0f;
if(x == 0.0f)
interceptTheta = 0;
else
{
alpha = virtualOriginalZ;
beta = (virtualOriginalZ - z) / x;
interceptX = (alpha * beta +
sqrtf(-1 * powf(alpha, 2) + (powf(beta, 2) + 1) * radius2)) /
(powf(beta, 2) + 1);
interceptZ = alpha - beta * interceptX;
interceptTheta = atan2f(interceptX, interceptZ);
}
if(interceptTheta > maxInterceptTheta || interceptTheta < -maxInterceptTheta)
{
interceptX = (alpha * beta -
sqrtf(-1 * powf(alpha, 2) + (powf(beta, 2) + 1) * radius2)) /
(powf(beta, 2) + 1);
interceptZ = alpha - beta * interceptX;
interceptTheta = atan2f(interceptX, interceptZ);
if(interceptTheta > maxInterceptTheta || interceptTheta < -maxInterceptTheta)
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
else
{
auto gridPixelAx = sqrtf(powf(x - probeRadius * sinf(interceptTheta), 2) +
powf(z - probeRadius * cosf(interceptTheta), 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(probeRadius + gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
else
{
auto gridPixelAx = sqrtf(powf(x - probeRadius * sinf(interceptTheta), 2) +
powf(z - probeRadius * cosf(interceptTheta), 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(probeRadius + gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
else
{
for (auto i = 0U; i < width * height; i++)
{
auto x = pixelXPos[i];
auto z = pixelZPos[i];
auto pixelTheta = atan2f(x, z - virtualOriginalZ);
auto pixelR = sqrtf(powf(x, 2) + powf(z - virtualOriginalZ, 2));
if(pixelR >= minR && pixelR <= maxR && pixelTheta >= minTheta && pixelTheta <= maxTheta)
{
auto strSin = 2 * sinf(steering);
auto ro = pixelR / strSin;
auto xo = ro * cosf(steering - pixelTheta);
auto zo = ro * sinf(steering - pixelTheta) + virtualOriginalZ;
if(zo == 0.0f)
{
auto interceptX = (radius2 - virtualOriginalZ2) / 2 / xo;
auto interceptZ = sqrtf(radius2 - powf(interceptX , 2));
auto interceptTheta = atan2f(interceptX, interceptZ);
if (interceptTheta > maxInterceptTheta || interceptTheta < -maxInterceptTheta)
{
interceptZ = -sqrtf(radius2 - powf(interceptX , 2));
interceptTheta = atan2f(interceptX, interceptZ);
if(interceptTheta > maxInterceptTheta ||
interceptTheta < -maxInterceptTheta)
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
else
{
auto gridPixelAx =
sqrtf(powf(x - probeRadius * sinf(interceptTheta), 2) +
powf(z - probeRadius * cosf(interceptTheta), 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(probeRadius + gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
else
{
auto gridPixelAx = sqrtf(powf(x - probeRadius * sinf(interceptTheta), 2) +
powf(z - probeRadius * cosf(interceptTheta), 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(probeRadius + gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
else
{
auto alpha = (radius2 - virtualOriginalZ2 + 2 * zo * virtualOriginalZ) / 2 / zo;
auto beta = xo / zo;
auto interceptX = (alpha * beta +
sqrtf(-1 * powf(alpha, 2) + (powf(beta, 2) + 1) * radius2)) /
(powf(beta, 2) + 1);
auto interceptZ = alpha - beta * interceptX;
auto interceptTheta = atan2f(interceptX, interceptZ);
if(interceptTheta > maxInterceptTheta || interceptTheta < -maxInterceptTheta)
{
interceptX = (alpha * beta -
sqrtf(-1 * powf(alpha, 2) + (powf(beta, 2) + 1) * radius2)) /
(powf(beta, 2) + 1);
interceptZ = alpha - beta * interceptX;
interceptTheta = atan2f(interceptX, interceptZ);
if(interceptTheta > maxInterceptTheta || interceptTheta < -maxInterceptTheta)
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
else
{
auto gridPixelAx = sqrtf(powf(x - probeRadius * sinf(interceptTheta), 2) +
powf(z - probeRadius * cosf(interceptTheta), 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(probeRadius + gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
else
{
auto gridPixelAx = sqrtf(powf(x - probeRadius * sinf(interceptTheta), 2) +
powf(z - probeRadius * cosf(interceptTheta), 2));
if(gridPixelAx >= startDepth && gridPixelAx <= depth)
{
gridPixelR.push_back(probeRadius + gridPixelAx);
gridPixelTheta.push_back(interceptTheta);
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
}
else
{
gridPixelR.push_back(0);
gridPixelTheta.push_back(0);
}
}
}
}