Test Vulkan code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

2102 lines
82 KiB

#include "ComputeAndGraphics.h"
#include <QDebug>
#include <set>
#include <random>
VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo
, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
auto func = reinterpret_cast<PFN_vkCreateDebugUtilsMessengerEXT>(vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT"));
if (func != nullptr) {
return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
} else {
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
auto func = reinterpret_cast<PFN_vkDestroyDebugUtilsMessengerEXT>(vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT"));
if (func != nullptr) {
func(instance, debugMessenger, pAllocator);
}
}
std::vector<char> ComputeAndGraphics::readFile(const std::string& filename) {
const std::string& newFilename = "/home/ali-mehrabani/Qt_projects/VkTest/" + filename;
std::ifstream file(newFilename, std::ios::ate | std::ios::binary);
if (!file.is_open()) {
throw std::runtime_error("failed to open file!");
}
size_t fileSize = static_cast<size_t>(file.tellg());
std::vector<char> buffer(fileSize);
file.seekg(0);
file.read(buffer.data(), static_cast<std::streamsize>(fileSize));
file.close();
return buffer;
}
ComputeAndGraphics::ComputeAndGraphics()
{
}
void ComputeAndGraphics::run()
{
initWindow();
initVulkan();
mainLoop();
cleanup();
}
void ComputeAndGraphics::initWindow()
{
glfwInit();
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
_window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
glfwSetWindowUserPointer(_window, this);
glfwSetFramebufferSizeCallback(_window, framebufferResizeCallback);
}
void ComputeAndGraphics::framebufferResizeCallback(GLFWwindow* window, int /*width*/, int /*height*/) {
auto app = reinterpret_cast<ComputeAndGraphics*>(glfwGetWindowUserPointer(window));
app->framebufferResized = true;
}
void ComputeAndGraphics::initVulkan()
{
// if (enableValidationLayers && !checkValidationLayerSupport()) {
// throw std::runtime_error("validation layers requested, but not available!");
// }
createInstance();
setupDebugMessenger();
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSwapChain();
createImageViews();
createRenderPass();
createDescriptorSetLayout();
createComputeDescriptorSetLayout();
createGraphicsPipeline();
createComputePipeline();
createCommandPool();
createDepthResources();
createFramebuffers();
createTextureImage();
createTextureImageView();
createTextureSampler();
createVertexBuffer();
createIndexBuffer();
createShaderStorageBuffers();
createUniformBuffers();
createDescriptorPool();
createComputeDescriptorPool();
createDescriptorSets();
createComputeDescriptorSets();
createCommandBuffer();
createComputeCommandBuffers();
createSyncObjects();
}
bool ComputeAndGraphics::checkValidationLayerSupport()
{
uint32_t layerCount;
vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
std::vector<VkLayerProperties> availableLayers(layerCount);
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
for (const char* layerName : validationLayers) {
bool layerFound = false;
for (const auto& layerProperties : availableLayers) {
if (strcmp(layerName, layerProperties.layerName) == 0) {
layerFound = true;
break;
}
}
if (!layerFound) {
return false;
}
}
return true;
}
VkApplicationInfo ComputeAndGraphics::createInstanceAppInfo()
{
VkApplicationInfo appInfo{};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Vulkan App";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
return appInfo;
}
VkDebugUtilsMessengerCreateInfoEXT ComputeAndGraphics::createInstanceDebugMessengerInfo()
{
VkDebugUtilsMessengerCreateInfoEXT createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT
| VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT
| VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT
| VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
createInfo.pfnUserCallback = debugCallback;
return createInfo;
}
VkInstanceCreateInfo ComputeAndGraphics::createInstanceInfo(VkApplicationInfo* appInfo, std::vector<const char *>& extensions
, VkDebugUtilsMessengerCreateInfoEXT& debugCreateInfo)
{
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = appInfo;
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
createInfo.ppEnabledExtensionNames = extensions.data();
if (enableValidationLayers) {
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data();
debugCreateInfo = createInstanceDebugMessengerInfo();
createInfo.pNext = dynamic_cast<VkDebugUtilsMessengerCreateInfoEXT*>(&debugCreateInfo);
} else {
createInfo.enabledLayerCount = 0;
createInfo.pNext = nullptr;
}
return createInfo;
}
void ComputeAndGraphics::createInstance()
{
VkApplicationInfo appInfo = createInstanceAppInfo();
auto extensions = getRequiredExtensions();
VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
VkInstanceCreateInfo createInfo = createInstanceInfo(&appInfo, extensions, debugCreateInfo);
if (vkCreateInstance(&createInfo, nullptr, &_instance) != VK_SUCCESS) {
throw std::runtime_error("failed to create instance!");
}
}
std::vector<const char*> ComputeAndGraphics::getRequiredExtensions()
{
uint32_t glfwExtensionCount = 0;
const char** glfwExtensions;
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
if (enableValidationLayers) {
extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
return extensions;
}
void ComputeAndGraphics::setupDebugMessenger() {
if (!enableValidationLayers)
{
return;
}
VkDebugUtilsMessengerCreateInfoEXT createInfo = createInstanceDebugMessengerInfo();
createInfo.pfnUserCallback = debugCallback;
if (CreateDebugUtilsMessengerEXT(_instance, &createInfo, nullptr, &_debugMessenger) != VK_SUCCESS) {
throw std::runtime_error("failed to set up debug messenger!");
}
}
void ComputeAndGraphics::createSurface()
{
if (glfwCreateWindowSurface(_instance, _window, nullptr, &_surface) != VK_SUCCESS) {
throw std::runtime_error("failed to create window surface!");
}
}
void ComputeAndGraphics::pickPhysicalDevice() {
_physicalDevice = VK_NULL_HANDLE;
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(_instance, &deviceCount, nullptr);
if (deviceCount == 0) {
throw std::runtime_error("failed to find GPUs with Vulkan support!");
}
chooseDevice(deviceCount);
if (_physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("failed to find a suitable GPU!");
}
}
void ComputeAndGraphics::chooseDevice(uint32_t deviceCount)
{
std::vector<VkPhysicalDevice> devices(deviceCount);
vkEnumeratePhysicalDevices(_instance, &deviceCount, devices.data());
for (const auto& device : devices) {
if (isDeviceSuitable(device)) {
_physicalDevice = device;
break;
}
}
}
bool ComputeAndGraphics::isDeviceSuitable(VkPhysicalDevice device) {
// VkPhysicalDeviceProperties deviceProperties;
// VkPhysicalDeviceFeatures deviceFeatures;
// vkGetPhysicalDeviceProperties(device, &deviceProperties);
// vkGetPhysicalDeviceFeatures(device, &deviceFeatures);
// return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU &&
// deviceFeatures.geometryShader;
QueueFamilyIndices indices = findQueueFamilies(device);
bool extensionsSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
if (extensionsSupported) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
}
VkPhysicalDeviceFeatures supportedFeatures;
vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
return indices.isComplete() && extensionsSupported && swapChainAdequate && supportedFeatures.samplerAnisotropy;
}
bool ComputeAndGraphics::checkDeviceExtensionSupport(VkPhysicalDevice device) {
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());
std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
for (const auto& extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
}
return requiredExtensions.empty();
}
SwapChainSupportDetails ComputeAndGraphics::querySwapChainSupport(VkPhysicalDevice device) {
SwapChainSupportDetails details;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, _surface, &details.capabilities);
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, _surface, &formatCount, nullptr);
if (formatCount != 0) {
details.formats.resize(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(device, _surface, &formatCount, details.formats.data());
}
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, _surface, &presentModeCount, nullptr);
if (presentModeCount != 0) {
details.presentModes.resize(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(device, _surface, &presentModeCount, details.presentModes.data());
}
return details;
}
QueueFamilyIndices ComputeAndGraphics::findQueueFamilies(VkPhysicalDevice device) {
QueueFamilyIndices indices;
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
uint32_t i = 0;
for (const auto& queueFamily : queueFamilies) {
if ((queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) && (queueFamily.queueFlags & VK_QUEUE_COMPUTE_BIT)) {
indices.graphicsFamily = i;
}
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, _surface, &presentSupport);
if (presentSupport) {
indices.presentFamily = i;
}
if (indices.isComplete()) {
break;
}
i++;
}
return indices;
}
void ComputeAndGraphics::createLogicalDevice()
{
QueueFamilyIndices indices = findQueueFamilies(_physicalDevice);
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()};
float queuePriority = 1.0f;
for (uint32_t queueFamily : uniqueQueueFamilies) {
queueCreateInfos.push_back(createQueueInfo(queueFamily, 1, &queuePriority));
}
VkPhysicalDeviceFeatures deviceFeatures = createDeviceFeatures();
VkDeviceCreateInfo createInfo = createLogicalDeviceInfo(queueCreateInfos, &deviceFeatures);
if (vkCreateDevice(_physicalDevice, &createInfo, nullptr, &_device) != VK_SUCCESS) {
throw std::runtime_error("failed to create logical device!");
}
vkGetDeviceQueue(_device, indices.graphicsFamily.value(), 0, &_graphicsQueue);
vkGetDeviceQueue(_device, indices.presentFamily.value(), 0, &_presentQueue);
}
VkDeviceQueueCreateInfo ComputeAndGraphics::createQueueInfo(uint32_t queueFamily, uint32_t queueCount, float* queuePriority)
{
VkDeviceQueueCreateInfo queueCreateInfo{};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = queueFamily;
queueCreateInfo.queueCount = queueCount;
queueCreateInfo.pQueuePriorities = queuePriority;
return queueCreateInfo;
}
VkPhysicalDeviceFeatures ComputeAndGraphics::createDeviceFeatures()
{
VkPhysicalDeviceFeatures deviceFeatures{};
deviceFeatures.samplerAnisotropy = VK_TRUE;
return deviceFeatures;
}
VkDeviceCreateInfo ComputeAndGraphics::createLogicalDeviceInfo(std::vector<VkDeviceQueueCreateInfo>& queueCreateInfos
, VkPhysicalDeviceFeatures* deviceFeatures)
{
VkDeviceCreateInfo createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
createInfo.pQueueCreateInfos = queueCreateInfos.data();
createInfo.pEnabledFeatures = deviceFeatures;
createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
createInfo.ppEnabledExtensionNames = deviceExtensions.data();
if (enableValidationLayers) {
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data();
} else {
createInfo.enabledLayerCount = 0;
createInfo.ppEnabledLayerNames = nullptr;
}
return createInfo;
}
void ComputeAndGraphics::createSwapChain() {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(_physicalDevice);
VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
imageCount = swapChainSupport.capabilities.maxImageCount;
}
VkSwapchainCreateInfoKHR createInfo = createSwapChainInfo(swapChainSupport, _surface, imageCount, surfaceFormat, extent, presentMode);
if (vkCreateSwapchainKHR(_device, &createInfo, nullptr, &_swapChain) != VK_SUCCESS) {
throw std::runtime_error("failed to create swap chain!");
}
vkGetSwapchainImagesKHR(_device, _swapChain, &imageCount, nullptr);
_swapChainImages.resize(imageCount);
vkGetSwapchainImagesKHR(_device, _swapChain, &imageCount, _swapChainImages.data());
_swapChainImageFormat = surfaceFormat.format;
_swapChainExtent = extent;
}
VkSwapchainCreateInfoKHR ComputeAndGraphics::createSwapChainInfo(SwapChainSupportDetails swapChainSupport, VkSurfaceKHR _surface, uint32_t imageCount
, VkSurfaceFormatKHR surfaceFormat, VkExtent2D extent, VkPresentModeKHR presentMode)
{
VkSwapchainCreateInfoKHR createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = _surface;
createInfo.minImageCount = imageCount;
createInfo.imageFormat = surfaceFormat.format;
createInfo.imageColorSpace = surfaceFormat.colorSpace;
createInfo.imageExtent = extent;
createInfo.imageArrayLayers = 1;
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
QueueFamilyIndices indices = findQueueFamilies(_physicalDevice);
uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()};
if (indices.graphicsFamily != indices.presentFamily) {
createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
createInfo.queueFamilyIndexCount = 2;
} else {
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
}
createInfo.pQueueFamilyIndices = queueFamilyIndices;
return createInfo;
}
VkSurfaceFormatKHR ComputeAndGraphics::chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
for (const auto& availableFormat : availableFormats) {
if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
return availableFormat;
}
}
return availableFormats[0];
}
VkPresentModeKHR ComputeAndGraphics::chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
for (const auto& availablePresentMode : availablePresentModes) {
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return availablePresentMode;
}
}
return VK_PRESENT_MODE_FIFO_KHR;
}
VkExtent2D ComputeAndGraphics::chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
return capabilities.currentExtent;
} else {
int width, height;
glfwGetFramebufferSize(_window, &width, &height);
VkExtent2D actualExtent = {
static_cast<uint32_t>(width),
static_cast<uint32_t>(height)
};
actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);
return actualExtent;
}
}
void ComputeAndGraphics::createImageViews() {
_swapChainImageViews.resize(_swapChainImages.size());
for (uint32_t i = 0; i < _swapChainImages.size(); i++) {
_swapChainImageViews[i] = createImageView(_swapChainImages[i], _swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
}
}
void ComputeAndGraphics::createRenderPass() {
VkAttachmentDescription colorAttachment = createColorAttachmentInfo(_swapChainImageFormat, VK_SAMPLE_COUNT_1_BIT);
VkAttachmentReference colorAttachmentRef = createAttachmentRefInfo(0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
VkAttachmentDescription depthAttachment = createDepthAttachmentInfo(findDepthFormat(), VK_SAMPLE_COUNT_1_BIT);
VkAttachmentReference depthAttachmentRef = createAttachmentRefInfo(1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
VkSubpassDescription subpass = createSubpassInfo(&colorAttachmentRef, &depthAttachmentRef);
VkSubpassDependency dependency = createSubpassDependencyInfo();
std::vector<VkAttachmentDescription> attachments = {colorAttachment, depthAttachment};
VkRenderPassCreateInfo renderPassInfo = createRenderPassInfo(attachments, &subpass, &dependency);
if (vkCreateRenderPass(_device, &renderPassInfo, nullptr, &_renderPass) != VK_SUCCESS) {
throw std::runtime_error("failed to create render pass!");
}
}
VkAttachmentDescription ComputeAndGraphics::createColorAttachmentInfo(VkFormat format, VkSampleCountFlagBits /*msaaSamples*/)
{
VkAttachmentDescription colorAttachment{};
colorAttachment.format = format;
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
return colorAttachment;
}
VkAttachmentReference ComputeAndGraphics::createAttachmentRefInfo(uint32_t offset, VkImageLayout layout)
{
VkAttachmentReference colorAttachmentRef{};
colorAttachmentRef.attachment = offset;
colorAttachmentRef.layout = layout;
return colorAttachmentRef;
}
VkAttachmentDescription ComputeAndGraphics::createDepthAttachmentInfo(VkFormat format, VkSampleCountFlagBits /*msaaSamples*/)
{
VkAttachmentDescription depthAttachment;
depthAttachment.format = format;
depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
return depthAttachment;
}
VkSubpassDescription ComputeAndGraphics::createSubpassInfo(VkAttachmentReference* colorAttachRef, VkAttachmentReference* depthAttachRef)
{
VkSubpassDescription subpass{};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = colorAttachRef;
subpass.pDepthStencilAttachment = depthAttachRef;
return subpass;
}
VkRenderPassCreateInfo ComputeAndGraphics::createRenderPassInfo(std::vector<VkAttachmentDescription>& attachments, VkSubpassDescription* subpass
, VkSubpassDependency* dependency)
{
VkRenderPassCreateInfo renderPassInfo{};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = subpass;
renderPassInfo.dependencyCount = 1;
renderPassInfo.pDependencies = dependency;
return renderPassInfo;
}
VkSubpassDependency ComputeAndGraphics::createSubpassDependencyInfo()
{
VkSubpassDependency dependency{};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
dependency.srcAccessMask = 0;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
return dependency;
}
void ComputeAndGraphics::createDescriptorSetLayout() {
VkDescriptorSetLayoutBinding uboLayoutBinding = createLayoutBindingInfo(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT);
VkDescriptorSetLayoutBinding samplerLayoutBinding = createLayoutBindingInfo(1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT);
std::vector<VkDescriptorSetLayoutBinding> bindings = {uboLayoutBinding, samplerLayoutBinding};
VkDescriptorSetLayoutCreateInfo layoutInfo{};
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
layoutInfo.pBindings = bindings.data();
if (vkCreateDescriptorSetLayout(_device, &layoutInfo, nullptr, &_descriptorSetLayout) != VK_SUCCESS) {
throw std::runtime_error("failed to create descriptor set layout!");
}
}
void ComputeAndGraphics::createComputeDescriptorSetLayout() {
VkDescriptorSetLayoutBinding uboLayoutBinding = createLayoutBindingInfo(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT);
VkDescriptorSetLayoutBinding computeLayoutBinding1 = createLayoutBindingInfo(1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT);
VkDescriptorSetLayoutBinding computeLayoutBinding2 = createLayoutBindingInfo(2, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT);
std::vector<VkDescriptorSetLayoutBinding> bindings = {uboLayoutBinding, computeLayoutBinding1, computeLayoutBinding2};
VkDescriptorSetLayoutCreateInfo layoutInfo{};
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
layoutInfo.pBindings = bindings.data();
if (vkCreateDescriptorSetLayout(_device, &layoutInfo, nullptr, &_computeDescriptorSetLayout) != VK_SUCCESS) {
throw std::runtime_error("failed to create compute descriptor set layout!");
}
}
VkDescriptorSetLayoutBinding ComputeAndGraphics::createLayoutBindingInfo(uint32_t offset, VkDescriptorType descType, VkShaderStageFlagBits StageFlags)
{
VkDescriptorSetLayoutBinding layoutBinding{};
layoutBinding.binding = offset;
layoutBinding.descriptorType = descType;
layoutBinding.descriptorCount = 1;
layoutBinding.stageFlags = StageFlags;
layoutBinding.pImmutableSamplers = nullptr;
return layoutBinding;
}
void ComputeAndGraphics::createGraphicsPipeline()
{
auto vertShaderCode = readFile("shaders/VulkanTutorial1.0/ComputeAndGraphics/vertComp.spv");
auto fragShaderCode = readFile("shaders/VulkanTutorial1.0/ComputeAndGraphics/fragComp.spv");
VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);
VkPipelineShaderStageCreateInfo vertShaderStageInfo = createPipelineShaderInfo(VK_SHADER_STAGE_VERTEX_BIT, vertShaderModule);
VkPipelineShaderStageCreateInfo fragShaderStageInfo = createPipelineShaderInfo(VK_SHADER_STAGE_FRAGMENT_BIT, fragShaderModule);
VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};
auto bindingDescription = Vertex::getBindingDescription();
auto attributeDescriptions = Vertex::getAttributeDescriptions();
VkPipelineVertexInputStateCreateInfo vertexInputInfo = createPipelineVertexInputInfo();
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();
VkPipelineInputAssemblyStateCreateInfo inputAssembly = createPipelineInputAssemblyStateInfo();
std::vector<VkDynamicState> dynamicStates = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState = createPipelineDynamicStateInfo(dynamicStates);
VkPipelineViewportStateCreateInfo viewportState = createPipelineViewportStateInfo();
VkPipelineRasterizationStateCreateInfo rasterizer = createPipelineRasterizationStateInfo();
VkPipelineMultisampleStateCreateInfo multisampling = createPipelineMultisampleStateInfo();
VkPipelineColorBlendAttachmentState colorBlendAttachment = colorPipelineBlendAttachmentStateInfo();
VkPipelineColorBlendStateCreateInfo colorBlending = colorPipelineBlendStateInfo(&colorBlendAttachment);
VkPipelineLayoutCreateInfo pipelineLayoutInfo = createPipelineLayoutInfo();
if (vkCreatePipelineLayout(_device, &pipelineLayoutInfo, nullptr, &_pipelineLayout) != VK_SUCCESS) {
throw std::runtime_error("failed to create pipeline layout!");
}
VkPipelineDepthStencilStateCreateInfo depthStencil = createPipelineDepthStencilStateInfo();
VkGraphicsPipelineCreateInfo pipelineInfo{};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &inputAssembly;
pipelineInfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelineInfo.pDepthStencilState = &depthStencil;
pipelineInfo.pColorBlendState = &colorBlending;
pipelineInfo.pDynamicState = &dynamicState;
pipelineInfo.layout = _pipelineLayout;
pipelineInfo.renderPass = _renderPass;
pipelineInfo.subpass = 0;
pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
pipelineInfo.basePipelineIndex = -1; // Optional
if (vkCreateGraphicsPipelines(_device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &_graphicsPipeline) != VK_SUCCESS) {
throw std::runtime_error("failed to create graphics pipeline!");
}
vkDestroyShaderModule(_device, fragShaderModule, nullptr);
vkDestroyShaderModule(_device, vertShaderModule, nullptr);
}
VkPipelineShaderStageCreateInfo ComputeAndGraphics::createPipelineShaderInfo(VkShaderStageFlagBits stage, VkShaderModule module)
{
VkPipelineShaderStageCreateInfo shaderStageInfo{};
shaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageInfo.stage = stage;
shaderStageInfo.module = module;
shaderStageInfo.pName = "main";
return shaderStageInfo;
}
VkPipelineVertexInputStateCreateInfo ComputeAndGraphics::createPipelineVertexInputInfo()
{
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
return vertexInputInfo;
}
VkPipelineInputAssemblyStateCreateInfo ComputeAndGraphics::createPipelineInputAssemblyStateInfo()
{
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
inputAssembly.primitiveRestartEnable = VK_FALSE;
return inputAssembly;
}
VkPipelineDynamicStateCreateInfo ComputeAndGraphics::createPipelineDynamicStateInfo(std::vector<VkDynamicState>& dynamicStates)
{
VkPipelineDynamicStateCreateInfo dynamicState{};
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
dynamicState.pDynamicStates = dynamicStates.data();
return dynamicState;
}
VkPipelineViewportStateCreateInfo ComputeAndGraphics::createPipelineViewportStateInfo()
{
VkPipelineViewportStateCreateInfo viewportState{};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;
viewportState.scissorCount = 1;
return viewportState;
}
VkPipelineRasterizationStateCreateInfo ComputeAndGraphics::createPipelineRasterizationStateInfo()
{
VkPipelineRasterizationStateCreateInfo rasterizer{};
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer.depthClampEnable = VK_FALSE;
rasterizer.rasterizerDiscardEnable = VK_FALSE;
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizer.depthBiasEnable = VK_FALSE;
rasterizer.depthBiasConstantFactor = 0.0f; // Optional
rasterizer.depthBiasClamp = 0.0f; // Optional
rasterizer.depthBiasSlopeFactor = 0.0f; // Optional
return rasterizer;
}
VkPipelineMultisampleStateCreateInfo ComputeAndGraphics::createPipelineMultisampleStateInfo()
{
VkPipelineMultisampleStateCreateInfo multisampling{};
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.sampleShadingEnable = VK_FALSE;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisampling.minSampleShading = 1.0f; // Optional
multisampling.pSampleMask = nullptr; // Optional
multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
multisampling.alphaToOneEnable = VK_FALSE; // Optional
return multisampling;
}
VkPipelineColorBlendAttachmentState ComputeAndGraphics::colorPipelineBlendAttachmentStateInfo()
{
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
colorBlendAttachment.blendEnable = VK_FALSE;
colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional
colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional
return colorBlendAttachment;
}
VkPipelineLayoutCreateInfo ComputeAndGraphics::createPipelineLayoutInfo()
{
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 1;
pipelineLayoutInfo.pSetLayouts = &_descriptorSetLayout;
pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
pipelineLayoutInfo.pPushConstantRanges = nullptr; // Optional
return pipelineLayoutInfo;
}
VkPipelineDepthStencilStateCreateInfo ComputeAndGraphics::createPipelineDepthStencilStateInfo()
{
VkPipelineDepthStencilStateCreateInfo depthStencil{};
depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencil.depthTestEnable = VK_TRUE;
depthStencil.depthWriteEnable = VK_TRUE;
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
depthStencil.depthBoundsTestEnable = VK_FALSE;
depthStencil.minDepthBounds = 0.0f; // Optional
depthStencil.maxDepthBounds = 1.0f; // Optional
depthStencil.stencilTestEnable = VK_FALSE;
depthStencil.front = {}; // Optional
depthStencil.back = {}; // Optional
return depthStencil;
}
VkPipelineColorBlendStateCreateInfo ComputeAndGraphics::colorPipelineBlendStateInfo(VkPipelineColorBlendAttachmentState* colorBlendAttachment)
{
VkPipelineColorBlendStateCreateInfo colorBlending{};
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlending.logicOpEnable = VK_FALSE;
colorBlending.logicOp = VK_LOGIC_OP_COPY; // Optional
colorBlending.attachmentCount = 1;
colorBlending.pAttachments = colorBlendAttachment;
colorBlending.blendConstants[0] = 0.0f; // Optional
colorBlending.blendConstants[1] = 0.0f; // Optional
colorBlending.blendConstants[2] = 0.0f; // Optional
colorBlending.blendConstants[3] = 0.0f; // Optional
return colorBlending;
}
void ComputeAndGraphics::createComputePipeline()
{
auto computeShaderCode = readFile("shaders/VulkanTutorial1.0/ComputeAndGraphics/compComp.spv");
VkShaderModule computeShaderModule = createShaderModule(computeShaderCode);
VkPipelineShaderStageCreateInfo computeShaderStageInfo = createPipelineShaderInfo(VK_SHADER_STAGE_COMPUTE_BIT, computeShaderModule);
VkPipelineLayoutCreateInfo pipelineLayoutInfo = createComputePipelineLayoutInfo();
if (vkCreatePipelineLayout(_device, &pipelineLayoutInfo, nullptr, &_computePipelineLayout) != VK_SUCCESS) {
throw std::runtime_error("failed to create compute pipeline layout!");
}
VkComputePipelineCreateInfo pipelineInfo{};
pipelineInfo.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
pipelineInfo.layout = _computePipelineLayout;
pipelineInfo.stage = computeShaderStageInfo;
if (vkCreateComputePipelines(_device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &_computePipeline) != VK_SUCCESS) {
throw std::runtime_error("failed to create compute pipeline!");
}
vkDestroyShaderModule(_device, computeShaderModule, nullptr);
}
VkPipelineLayoutCreateInfo ComputeAndGraphics::createComputePipelineLayoutInfo()
{
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 1;
pipelineLayoutInfo.pSetLayouts = &_computeDescriptorSetLayout;
return pipelineLayoutInfo;
}
VkShaderModule ComputeAndGraphics::createShaderModule(const std::vector<char>& code)
{
VkShaderModuleCreateInfo createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
createInfo.codeSize = code.size();
createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());
VkShaderModule shaderModule;
if (vkCreateShaderModule(_device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
throw std::runtime_error("failed to create shader module!");
}
return shaderModule;
}
void ComputeAndGraphics::createFramebuffers() {
_swapChainFramebuffers.resize(_swapChainImageViews.size());
for (size_t i = 0; i < _swapChainImageViews.size(); i++) {
std::vector<VkImageView> attachments = {
_swapChainImageViews[i],
_depthImageView
};
VkFramebufferCreateInfo framebufferInfo = createFramebufferInfo(attachments);
if (vkCreateFramebuffer(_device, &framebufferInfo, nullptr, &_swapChainFramebuffers[i]) != VK_SUCCESS) {
throw std::runtime_error("failed to create framebuffer!");
}
}
}
VkFramebufferCreateInfo ComputeAndGraphics::createFramebufferInfo(std::vector<VkImageView>& attachments)
{
VkFramebufferCreateInfo framebufferInfo{};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.renderPass = _renderPass;
framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
framebufferInfo.pAttachments = attachments.data();
framebufferInfo.width = _swapChainExtent.width;
framebufferInfo.height = _swapChainExtent.height;
framebufferInfo.layers = 1;
return framebufferInfo;
}
void ComputeAndGraphics::createCommandPool() {
QueueFamilyIndices queueFamilyIndices = findQueueFamilies(_physicalDevice);
VkCommandPoolCreateInfo poolInfo{};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
if (vkCreateCommandPool(_device, &poolInfo, nullptr, &_commandPool) != VK_SUCCESS) {
throw std::runtime_error("failed to create command pool!");
}
}
void ComputeAndGraphics::createDepthResources() {
VkFormat depthFormat = findDepthFormat();
createImage(_swapChainExtent.width, _swapChainExtent.height, 1, VK_SAMPLE_COUNT_1_BIT, depthFormat, VK_IMAGE_TILING_OPTIMAL
, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, _depthImage, _depthImageMemory);
_depthImageView = createImageView(_depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT, 1);
transitionImageLayout(_depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, 1);
}
VkFormat ComputeAndGraphics::findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling
, VkFormatFeatureFlags features) {
for (VkFormat format : candidates) {
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(_physicalDevice, format, &props);
if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) {
return format;
} else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) {
return format;
}
}
throw std::runtime_error("failed to find supported format!");
}
VkFormat ComputeAndGraphics::findDepthFormat() {
return findSupportedFormat(
{VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT},
VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
);
}
bool ComputeAndGraphics::hasStencilComponent(VkFormat format) {
return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT;
}
void ComputeAndGraphics::createTextureImage() {
int texWidth, texHeight, texChannels;
stbi_uc* pixels = stbi_load("/home/ali-mehrabani/Qt_projects/VkTest/textures/texture.jpg", &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
VkDeviceSize imageSize = texWidth * texHeight * 4;
// qDebug() << imageSize;
// qDebug() << texWidth;
// qDebug() << texHeight;
if (!pixels) {
throw std::runtime_error("failed to load texture image!");
}
VkBuffer stagingBuffer;
VkDeviceMemory stagingBufferMemory;
copyImageToStagingBuffer(stagingBuffer, stagingBufferMemory, pixels, imageSize);
stbi_image_free(pixels);
createImage(texWidth, texHeight, 1, VK_SAMPLE_COUNT_1_BIT, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_TILING_LINEAR
, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT
, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, _textureImage, _textureImageMemory);
// transitionImageLayout(_textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1);
// copyBufferToImage(stagingBuffer, _textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));
// transitionImageLayout(_textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1);
vkDestroyBuffer(_device, stagingBuffer, nullptr);
vkFreeMemory(_device, stagingBufferMemory, nullptr);
}
void ComputeAndGraphics::copyImageToStagingBuffer(VkBuffer& stagingBuffer, VkDeviceMemory& stagingBufferMemory, stbi_uc* pixels, VkDeviceSize imageSize)
{
createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
, stagingBuffer, stagingBufferMemory);
void* data;
vkMapMemory(_device, stagingBufferMemory, 0, imageSize, 0, &data);
memcpy(data, pixels, static_cast<size_t>(imageSize));
vkUnmapMemory(_device, stagingBufferMemory);
}
void ComputeAndGraphics::transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout, uint32_t mipLevels)
{
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkImageMemoryBarrier barrier = initTransitionLayoutBarrierInfo(image, format, oldLayout, newLayout, mipLevels);
VkPipelineStageFlags sourceStage;
VkPipelineStageFlags destinationStage;
setSrcAndDst(barrier, sourceStage, destinationStage, oldLayout, newLayout);
vkCmdPipelineBarrier(
commandBuffer,
sourceStage, destinationStage,
0,
0, nullptr,
0, nullptr,
1, &barrier
);
endSingleTimeCommands(commandBuffer);
}
VkImageMemoryBarrier ComputeAndGraphics::initTransitionLayoutBarrierInfo(VkImage image, VkFormat format, VkImageLayout oldLayout
, VkImageLayout newLayout, uint32_t mipLevels)
{
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = oldLayout;
barrier.newLayout = newLayout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (hasStencilComponent(format)) {
barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
} else {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
}
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.levelCount = mipLevels;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = 1;
return barrier;
}
void ComputeAndGraphics::setSrcAndDst(VkImageMemoryBarrier& barrier, VkPipelineStageFlags& sourceStage, VkPipelineStageFlags& destinationStage
, VkImageLayout oldLayout, VkImageLayout newLayout)
{
if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
} else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
} else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
} else {
throw std::invalid_argument("unsupported layout transition!");
}
}
void ComputeAndGraphics::createImage(uint32_t width, uint32_t height, uint32_t /*mipLevels*/, VkSampleCountFlagBits /*numSamples*/, VkFormat format
, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image
, VkDeviceMemory& imageMemory)
{
VkImageCreateInfo imageInfo{};
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = static_cast<uint32_t>(width);
imageInfo.extent.height = static_cast<uint32_t>(height);
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = 1;
imageInfo.format = format;
imageInfo.tiling = tiling;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageInfo.usage = usage;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.flags = 0; // Optional
if (vkCreateImage(_device, &imageInfo, nullptr, &image) != VK_SUCCESS) {
throw std::runtime_error("failed to create image!");
}
allocateAndBindImageMemory(image, imageMemory, properties);
}
void ComputeAndGraphics::allocateAndBindImageMemory(VkImage& image, VkDeviceMemory& imageMemory, VkMemoryPropertyFlags properties)
{
VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(_device, image, &memRequirements);
VkMemoryAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(_device, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate image memory!");
}
vkBindImageMemory(_device, image, imageMemory, 0);
}
void ComputeAndGraphics::copyBufferToImage(VkBuffer buffer, VkImage image, uint32_t width, uint32_t height)
{
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkBufferImageCopy region = createBufferImageCopyInfo(width, height);
vkCmdCopyBufferToImage(
commandBuffer,
buffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&region
);
endSingleTimeCommands(commandBuffer);
}
VkBufferImageCopy ComputeAndGraphics::createBufferImageCopyInfo(uint32_t width, uint32_t height)
{
VkBufferImageCopy region{};
region.bufferOffset = 0;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = 0;
region.imageSubresource.baseArrayLayer = 0;
region.imageSubresource.layerCount = 1;
region.imageOffset = {0, 0, 0};
region.imageExtent = {
width,
height,
1
};
return region;
}
void ComputeAndGraphics::createTextureImageView()
{
_textureImageView = createImageView(_textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_ASPECT_COLOR_BIT, 1);
}
VkImageView ComputeAndGraphics::createImageView(VkImage image, VkFormat format, VkImageAspectFlags aspectFlags, uint32_t mipLevels)
{
VkImageViewCreateInfo viewInfo{};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = format;
viewInfo.subresourceRange.aspectMask = aspectFlags;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = mipLevels;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
VkImageView imageView;
if (vkCreateImageView(_device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
throw std::runtime_error("failed to create texture image view!");
}
return imageView;
}
void ComputeAndGraphics::createTextureSampler()
{
VkSamplerCreateInfo samplerInfo{};
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
VkPhysicalDeviceProperties properties{};
vkGetPhysicalDeviceProperties(_physicalDevice, &properties);
samplerInfo.anisotropyEnable = VK_TRUE;
samplerInfo.maxAnisotropy = properties.limits.maxSamplerAnisotropy;
samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
samplerInfo.unnormalizedCoordinates = VK_FALSE;
samplerInfo.compareEnable = VK_FALSE;
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.mipLodBias = 0.0f;
samplerInfo.minLod = 0.0f;
samplerInfo.maxLod = 1.0;
if (vkCreateSampler(_device, &samplerInfo, nullptr, &_textureSampler) != VK_SUCCESS) {
throw std::runtime_error("failed to create texture sampler!");
}
}
void ComputeAndGraphics::createVertexBuffer()
{
VkDeviceSize bufferSize = sizeof(_vertices[0]) * _vertices.size();
VkBuffer stagingBuffer;
VkDeviceMemory stagingBufferMemory;
copyVerticesToStagingBuffer(stagingBuffer, stagingBufferMemory);
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, _vertexBuffer, _vertexBufferMemory);
copyBuffer(stagingBuffer, _vertexBuffer, bufferSize);
vkDestroyBuffer(_device, stagingBuffer, nullptr);
vkFreeMemory(_device, stagingBufferMemory, nullptr);
}
void ComputeAndGraphics::copyVerticesToStagingBuffer(VkBuffer& stagingBuffer, VkDeviceMemory& stagingBufferMemory)
{
VkDeviceSize bufferSize = sizeof(_vertices[0]) * _vertices.size();
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
, stagingBuffer, stagingBufferMemory);
void* data;
vkMapMemory(_device, stagingBufferMemory, 0, bufferSize, 0, &data);
memcpy(data, _vertices.data(), reinterpret_cast<size_t>(bufferSize));
vkUnmapMemory(_device, stagingBufferMemory);
}
void ComputeAndGraphics::createIndexBuffer() {
VkDeviceSize bufferSize = sizeof(_indices[0]) * _indices.size();
VkBuffer stagingBuffer;
VkDeviceMemory stagingBufferMemory;
copyIndicesToStagingBuffer(stagingBuffer, stagingBufferMemory);
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
, _indexBuffer, _indexBufferMemory);
copyBuffer(stagingBuffer, _indexBuffer, bufferSize);
vkDestroyBuffer(_device, stagingBuffer, nullptr);
vkFreeMemory(_device, stagingBufferMemory, nullptr);
}
void ComputeAndGraphics::copyIndicesToStagingBuffer(VkBuffer& stagingBuffer, VkDeviceMemory& stagingBufferMemory)
{
VkDeviceSize bufferSize = sizeof(_indices[0]) * _indices.size();
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
, stagingBuffer, stagingBufferMemory);
void* data;
vkMapMemory(_device, stagingBufferMemory, 0, bufferSize, 0, &data);
memcpy(data, _indices.data(), reinterpret_cast<size_t>(bufferSize));
vkUnmapMemory(_device, stagingBufferMemory);
}
void ComputeAndGraphics::createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties
, VkBuffer& buffer, VkDeviceMemory& bufferMemory)
{
VkBufferCreateInfo bufferInfo{};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (vkCreateBuffer(_device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
throw std::runtime_error("failed to create vertex buffer!");
}
allocateAndBindBufferMemory(buffer, bufferMemory, properties);
}
void ComputeAndGraphics::allocateAndBindBufferMemory(VkBuffer& buffer, VkDeviceMemory& bufferMemory, VkMemoryPropertyFlags properties)
{
VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(_device, buffer, &memRequirements);
VkMemoryAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(_device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate vertex buffer memory!");
}
vkBindBufferMemory(_device, buffer, bufferMemory, 0);
}
void ComputeAndGraphics::copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size)
{
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkBufferCopy copyRegion{};
copyRegion.srcOffset = 0; // Optional
copyRegion.dstOffset = 0; // Optional
copyRegion.size = size;
vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);
endSingleTimeCommands(commandBuffer);
}
void ComputeAndGraphics::endSingleTimeCommands(VkCommandBuffer commandBuffer)
{
vkEndCommandBuffer(commandBuffer);
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
vkQueueSubmit(_graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
vkQueueWaitIdle(_graphicsQueue);
vkFreeCommandBuffers(_device, _commandPool, 1, &commandBuffer);
}
VkCommandBuffer ComputeAndGraphics::beginSingleTimeCommands()
{
VkCommandBufferAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandPool = _commandPool;
allocInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer;
vkAllocateCommandBuffers(_device, &allocInfo, &commandBuffer);
VkCommandBufferBeginInfo beginInfo{};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer(commandBuffer, &beginInfo);
return commandBuffer;
}
uint32_t ComputeAndGraphics::findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
VkPhysicalDeviceMemoryProperties memProperties;
vkGetPhysicalDeviceMemoryProperties(_physicalDevice, &memProperties);
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
throw std::runtime_error("failed to find suitable memory type!");
}
void ComputeAndGraphics::createShaderStorageBuffers() {
int texWidth, texHeight, texChannels;
stbi_uc* pixels = stbi_load("/home/ali-mehrabani/Qt_projects/VkTest/textures/texture.jpg", &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
_textureImageSize = texWidth * texHeight * 4;
_textureImageWidth = texWidth;
_textureImageHeight = texHeight;
if (!pixels) {
throw std::runtime_error("failed to load texture image!");
}
VkBuffer stagingBuffer;
VkDeviceMemory stagingBufferMemory;
copyImageToStagingBuffer(stagingBuffer, stagingBufferMemory, pixels, _textureImageSize);
initShaderStorageBuffers(stagingBuffer, _textureImageSize);
vkDestroyBuffer(_device, stagingBuffer, nullptr);
vkFreeMemory(_device, stagingBufferMemory, nullptr);
}
void ComputeAndGraphics::initShaderStorageBuffers(VkBuffer& stagingBuffer, VkDeviceSize bufferSize)
{
_shaderRawStorageBuffers.resize(MAX_FRAMES_IN_FLIGHT);
_shaderRawStorageBuffersMemory.resize(MAX_FRAMES_IN_FLIGHT);
_shaderTransformedStorageBuffers.resize(MAX_FRAMES_IN_FLIGHT);
_shaderTransformedStorageBuffersMemory.resize(MAX_FRAMES_IN_FLIGHT);
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
createBuffer(bufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT
, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, _shaderRawStorageBuffers[i], _shaderRawStorageBuffersMemory[i]);
copyBuffer(stagingBuffer, _shaderRawStorageBuffers[i], bufferSize);
createBuffer(bufferSize, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT
, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, _shaderTransformedStorageBuffers[i], _shaderTransformedStorageBuffersMemory[i]);
copyBuffer(stagingBuffer, _shaderTransformedStorageBuffers[i], bufferSize);
}
}
void ComputeAndGraphics::createUniformBuffers() {
VkDeviceSize bufferSize = sizeof(UniformBufferObject);
_uniformBuffers.resize(MAX_FRAMES_IN_FLIGHT);
_uniformBuffersMemory.resize(MAX_FRAMES_IN_FLIGHT);
_uniformBuffersMapped.resize(MAX_FRAMES_IN_FLIGHT);
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
, _uniformBuffers[i], _uniformBuffersMemory[i]);
vkMapMemory(_device, _uniformBuffersMemory[i], 0, bufferSize, 0, &_uniformBuffersMapped[i]);
}
}
void ComputeAndGraphics::createDescriptorPool() {
std::array<VkDescriptorPoolSize, 2> poolSizes{};
poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSizes[0].descriptorCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
poolSizes[1].descriptorCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
VkDescriptorPoolCreateInfo poolInfo{};
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
poolInfo.pPoolSizes = poolSizes.data();
poolInfo.maxSets = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
if (vkCreateDescriptorPool(_device, &poolInfo, nullptr, &_descriptorPool) != VK_SUCCESS) {
throw std::runtime_error("failed to create descriptor pool!");
}
}
void ComputeAndGraphics::createComputeDescriptorPool() {
std::array<VkDescriptorPoolSize, 2> poolSizes{};
poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSizes[0].descriptorCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
poolSizes[1].type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
poolSizes[1].descriptorCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT) * 2;
VkDescriptorPoolCreateInfo poolInfo{};
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
poolInfo.pPoolSizes = poolSizes.data();
poolInfo.maxSets = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
if (vkCreateDescriptorPool(_device, &poolInfo, nullptr, &_computeDescriptorPool) != VK_SUCCESS) {
throw std::runtime_error("failed to create descriptor pool!");
}
}
void ComputeAndGraphics::createDescriptorSets()
{
allocateDescriptorSets();
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
VkDescriptorBufferInfo bufferInfo = createDescriptorBufferInfo(_uniformBuffers[i], sizeof(UniformBufferObject));
VkDescriptorImageInfo imageInfo = createDescriptorImageInfo();
std::array<VkWriteDescriptorSet, 2> descriptorWrites{};
addUniformBufferWriteDescriptor(descriptorWrites[0], &bufferInfo, _descriptorSets[i], 0);
addImageWriteDescriptor(descriptorWrites[1], &imageInfo, _descriptorSets[i], 1);
vkUpdateDescriptorSets(_device, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);
}
}
void ComputeAndGraphics::addUniformBufferWriteDescriptor(VkWriteDescriptorSet& descriptorWrite, VkDescriptorBufferInfo* bufferInfo, VkDescriptorSet dstSet
, uint32_t dstBinding)
{
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = dstSet;
descriptorWrite.dstBinding = dstBinding;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrite.descriptorCount = 1;
descriptorWrite.pBufferInfo = bufferInfo;
}
void ComputeAndGraphics::addImageWriteDescriptor(VkWriteDescriptorSet& descriptorWrite, VkDescriptorImageInfo* imageInfo, VkDescriptorSet dstSet
, uint32_t dstBinding)
{
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = dstSet;
descriptorWrite.dstBinding = dstBinding;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrite.descriptorCount = 1;
descriptorWrite.pImageInfo = imageInfo;
}
VkDescriptorImageInfo ComputeAndGraphics::createDescriptorImageInfo()
{
VkDescriptorImageInfo imageInfo{};
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.imageView = _textureImageView;
imageInfo.sampler = _textureSampler;
return imageInfo;
}
VkDescriptorBufferInfo ComputeAndGraphics::createDescriptorBufferInfo(VkBuffer buffer, VkDeviceSize range)
{
VkDescriptorBufferInfo bufferInfo{};
bufferInfo.buffer = buffer;
bufferInfo.offset = 0;
bufferInfo.range = range;
return bufferInfo;
}
void ComputeAndGraphics::allocateDescriptorSets()
{
std::vector<VkDescriptorSetLayout> layouts(MAX_FRAMES_IN_FLIGHT, _descriptorSetLayout);
VkDescriptorSetAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = _descriptorPool;
allocInfo.descriptorSetCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
allocInfo.pSetLayouts = layouts.data();
_descriptorSets.resize(MAX_FRAMES_IN_FLIGHT);
if (vkAllocateDescriptorSets(_device, &allocInfo, _descriptorSets.data()) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate descriptor sets!");
}
}
void ComputeAndGraphics::createComputeDescriptorSets()
{
allocateComputeDescriptorSets();
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
VkDescriptorBufferInfo bufferInfo = createDescriptorBufferInfo(_uniformBuffers[i], sizeof(UniformBufferObject));
std::array<VkWriteDescriptorSet, 3> descriptorWrites{};
addUniformBufferWriteDescriptor(descriptorWrites[0], &bufferInfo, _computeDescriptorSets[i], 0);
VkDescriptorBufferInfo storageBufferInfoLastFrame = createDescriptorBufferInfo(_shaderRawStorageBuffers[i], _textureImageSize);
addStorageBufferWriteDescriptor(descriptorWrites[1], &storageBufferInfoLastFrame, _computeDescriptorSets[i], 1);
VkDescriptorBufferInfo storageBufferInfoCurrentFrame = createDescriptorBufferInfo(_shaderTransformedStorageBuffers[i], _textureImageSize);
addStorageBufferWriteDescriptor(descriptorWrites[2], &storageBufferInfoCurrentFrame, _computeDescriptorSets[i], 2);
vkUpdateDescriptorSets(_device, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);
}
}
void ComputeAndGraphics::addStorageBufferWriteDescriptor(VkWriteDescriptorSet& descriptorWrite, VkDescriptorBufferInfo* bufferInfo, VkDescriptorSet dstSet
, uint32_t dstBinding)
{
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = dstSet;
descriptorWrite.dstBinding = dstBinding;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptorWrite.descriptorCount = 1;
descriptorWrite.pBufferInfo = bufferInfo;
}
void ComputeAndGraphics::allocateComputeDescriptorSets()
{
std::vector<VkDescriptorSetLayout> layouts(MAX_FRAMES_IN_FLIGHT, _computeDescriptorSetLayout);
VkDescriptorSetAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = _computeDescriptorPool;
allocInfo.descriptorSetCount = static_cast<uint32_t>(MAX_FRAMES_IN_FLIGHT);
allocInfo.pSetLayouts = layouts.data();
_computeDescriptorSets.resize(MAX_FRAMES_IN_FLIGHT);
if (vkAllocateDescriptorSets(_device, &allocInfo, _computeDescriptorSets.data()) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate descriptor sets!");
}
}
void ComputeAndGraphics::createCommandBuffer() {
_commandBuffers.resize(MAX_FRAMES_IN_FLIGHT);
VkCommandBufferAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = _commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = static_cast<uint32_t>(_commandBuffers.size());
if (vkAllocateCommandBuffers(_device, &allocInfo, _commandBuffers.data()) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate command buffers!");
}
}
void ComputeAndGraphics::createComputeCommandBuffers() {
_computeCommandBuffers.resize(MAX_FRAMES_IN_FLIGHT);
VkCommandBufferAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = _commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = static_cast<uint32_t>(_computeCommandBuffers.size());
if (vkAllocateCommandBuffers(_device, &allocInfo, _computeCommandBuffers.data()) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate compute command buffers!");
}
}
void ComputeAndGraphics::createSyncObjects() {
_imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
_renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
_inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
_computeFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
_computeInFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
VkSemaphoreCreateInfo semaphoreInfo{};
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkFenceCreateInfo fenceInfo{};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++)
{
if (vkCreateSemaphore(_device, &semaphoreInfo, nullptr, &_imageAvailableSemaphores[i]) != VK_SUCCESS ||
vkCreateSemaphore(_device, &semaphoreInfo, nullptr, &_renderFinishedSemaphores[i]) != VK_SUCCESS ||
vkCreateFence(_device, &fenceInfo, nullptr, &_inFlightFences[i]) != VK_SUCCESS) {
throw std::runtime_error("failed to create synchronization objects for a frame!");
}
if (vkCreateSemaphore(_device, &semaphoreInfo, nullptr, &_computeFinishedSemaphores[i]) != VK_SUCCESS ||
vkCreateFence(_device, &fenceInfo, nullptr, &_computeInFlightFences[i]) != VK_SUCCESS) {
throw std::runtime_error("failed to create compute synchronization objects for a frame!");
}
}
}
void ComputeAndGraphics::mainLoop()
{
while (!glfwWindowShouldClose(_window)) {
glfwPollEvents();
drawFrame();
}
vkDeviceWaitIdle(_device);
}
void ComputeAndGraphics::drawFrame(){
computeSubmission();
copyTransformedBufferToTextureImage();
VkResult result = graphicsSubmission();
if (result == VK_ERROR_OUT_OF_DATE_KHR)
{
return;
}
currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
}
void ComputeAndGraphics::copyTransformedBufferToTextureImage()
{
transitionImageLayout(_textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1);
copyBufferToImage(_shaderTransformedStorageBuffers[currentFrame], _textureImage, _textureImageWidth, _textureImageHeight);
transitionImageLayout(_textureImage, VK_FORMAT_R8G8B8A8_SRGB, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1);
}
void ComputeAndGraphics::computeSubmission()
{
vkWaitForFences(_device, 1, &_computeInFlightFences[currentFrame], VK_TRUE, UINT64_MAX);
vkResetFences(_device, 1, &_computeInFlightFences[currentFrame]);
vkResetCommandBuffer(_computeCommandBuffers[currentFrame], /*VkCommandBufferResetFlagBits*/ 0);
recordComputeCommandBuffer(_computeCommandBuffers[currentFrame]);
VkSubmitInfo submitInfo = createComputeSubmitInfo();
if (vkQueueSubmit(_graphicsQueue, 1, &submitInfo, _computeInFlightFences[currentFrame]) != VK_SUCCESS) {
throw std::runtime_error("failed to submit compute command buffer!");
}
}
VkSubmitInfo ComputeAndGraphics::createComputeSubmitInfo()
{
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &_computeCommandBuffers[currentFrame];
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &_computeFinishedSemaphores[currentFrame];
return submitInfo;
}
VkResult ComputeAndGraphics::graphicsSubmission()
{
vkWaitForFences(_device, 1, &_inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(_device, _swapChain, UINT64_MAX, _imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
if (result == VK_ERROR_OUT_OF_DATE_KHR)
{
recreateSwapChain();
return VK_ERROR_OUT_OF_DATE_KHR;
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR)
{
throw std::runtime_error("failed to acquire swap chain image!");
}
VkSemaphore waitSemaphores[] = {_computeFinishedSemaphores[currentFrame], _imageAvailableSemaphores[currentFrame]};
VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
// VkSemaphore waitSemaphores[] = {_imageAvailableSemaphores[currentFrame]};
// VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
VkSemaphore signalSemaphores[] = {_renderFinishedSemaphores[currentFrame]};
drawSubmission(imageIndex, waitSemaphores, waitStages, signalSemaphores);
result = presentSubmission(imageIndex, signalSemaphores);
return result;
}
void ComputeAndGraphics::drawSubmission(uint32_t imageIndex, VkSemaphore* waitSemaphores, VkPipelineStageFlags* waitStages
, VkSemaphore* signalSemaphores)
{
updateUniformBuffer(currentFrame);
vkResetFences(_device, 1, &_inFlightFences[currentFrame]);
vkResetCommandBuffer(_commandBuffers[currentFrame], 0);
recordCommandBuffer(_commandBuffers[currentFrame], imageIndex);
VkSubmitInfo submitInfo = createDrawSubmitInfo(waitSemaphores, waitStages, signalSemaphores);
if (vkQueueSubmit(_graphicsQueue, 1, &submitInfo, _inFlightFences[currentFrame]) != VK_SUCCESS) {
throw std::runtime_error("failed to submit draw command buffer!");
}
}
VkSubmitInfo ComputeAndGraphics::createDrawSubmitInfo(VkSemaphore* waitSemaphores, VkPipelineStageFlags* waitStages, VkSemaphore* signalSemaphores)
{
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 2;
submitInfo.pWaitSemaphores = waitSemaphores;
submitInfo.pWaitDstStageMask = waitStages;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &_commandBuffers[currentFrame];
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = signalSemaphores;
return submitInfo;
}
VkResult ComputeAndGraphics::presentSubmission(uint32_t imageIndex, VkSemaphore* signalSemaphores)
{
VkPresentInfoKHR presentInfo{};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = signalSemaphores;
VkSwapchainKHR swapChains[] = {_swapChain};
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapChains;
presentInfo.pImageIndices = &imageIndex;
presentInfo.pResults = nullptr; // Optional
VkResult result = vkQueuePresentKHR(_presentQueue, &presentInfo);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || framebufferResized)
{
framebufferResized = false;
recreateSwapChain();
} else if (result != VK_SUCCESS) {
throw std::runtime_error("failed to present swap chain image!");
}
return result;
}
void ComputeAndGraphics::recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
beginPipelineCommands(commandBuffer);
beginRenderPass(commandBuffer, imageIndex);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, _graphicsPipeline);
VkViewport viewport = createViewportInfo();
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
VkRect2D scissor = createScissorInfo();
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
VkBuffer vertexBuffers[] = {_vertexBuffer};
VkDeviceSize offsets[] = {0};
vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);
vkCmdBindIndexBuffer(commandBuffer, _indexBuffer, 0, VK_INDEX_TYPE_UINT32);
// vkCmdBindVertexBuffers(commandBuffer, 0, 1, &_shaderStorageBuffers[currentFrame], offsets);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, _pipelineLayout, 0, 1, &_descriptorSets[currentFrame], 0, nullptr);
// vkCmdDraw(commandBuffer, PARTICLE_COUNT, 1, 0, 0);
vkCmdDrawIndexed(commandBuffer, static_cast<uint32_t>(_indices.size()), 1, 0, 0, 0);
vkCmdEndRenderPass(commandBuffer);
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
throw std::runtime_error("failed to record command buffer!");
}
}
void ComputeAndGraphics::beginPipelineCommands(VkCommandBuffer commandBuffer)
{
VkCommandBufferBeginInfo beginInfo{};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = 0; // Optional
beginInfo.pInheritanceInfo = nullptr; // Optional
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
throw std::runtime_error("failed to begin recording command buffer!");
}
}
void ComputeAndGraphics::beginRenderPass(VkCommandBuffer commandBuffer, uint32_t imageIndex)
{
VkRenderPassBeginInfo renderPassInfo{};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = _renderPass;
renderPassInfo.framebuffer = _swapChainFramebuffers[imageIndex];
renderPassInfo.renderArea.offset = {0, 0};
renderPassInfo.renderArea.extent = _swapChainExtent;
std::vector<VkClearValue> clearValues{};
clearValues.resize(2);
clearValues[0].color = {{0.0f, 0.0f, 0.0f, 1.0f}};
clearValues[1].depthStencil = {1.0f, 0};
renderPassInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
renderPassInfo.pClearValues = clearValues.data();
vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
}
VkViewport ComputeAndGraphics::createViewportInfo()
{
VkViewport viewport{};
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = static_cast<float>(_swapChainExtent.width);
viewport.height = static_cast<float>(_swapChainExtent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
return viewport;
}
VkRect2D ComputeAndGraphics::createScissorInfo()
{
VkRect2D scissor{};
scissor.offset = {0, 0};
scissor.extent = _swapChainExtent;
return scissor;
}
void ComputeAndGraphics::recordComputeCommandBuffer(VkCommandBuffer commandBuffer) {
beginPipelineCommands(commandBuffer);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, _computePipeline);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, _computePipelineLayout, 0, 1, &_computeDescriptorSets[currentFrame], 0, nullptr);
vkCmdDispatch(commandBuffer, static_cast<uint32_t>(_textureImageSize / 8), 1, 1);
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
throw std::runtime_error("failed to record compute command buffer!");
}
}
void ComputeAndGraphics::updateUniformBuffer(uint32_t currentImage) {
static auto startTime = std::chrono::high_resolution_clock::now();
auto currentTime = std::chrono::high_resolution_clock::now();
float time = std::chrono::duration<float, std::chrono::seconds::period>(currentTime - startTime).count();
UniformBufferObject ubo{};
ubo.model = glm::rotate(glm::mat4(1.0f), glm::radians(0.0f), glm::vec3(0.0f, 0.0f, 1.0f));
ubo.view = glm::lookAt(glm::vec3(0.001f, 0.001f, 1.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));
ubo.proj = glm::perspective(glm::radians(45.0f), _swapChainExtent.width / static_cast<float>(_swapChainExtent.height), 0.1f, 10.0f);
ubo.proj[1][1] *= -1;
memcpy(_uniformBuffersMapped[currentImage], &ubo, sizeof(ubo));
}
void ComputeAndGraphics::recreateSwapChain() {
int width = 0, height = 0;
glfwGetFramebufferSize(_window, &width, &height);
while (width == 0 || height == 0) {
glfwGetFramebufferSize(_window, &width, &height);
glfwWaitEvents();
}
vkDeviceWaitIdle(_device);
cleanupSwapChain();
createSwapChain();
createImageViews();
createDepthResources();
createFramebuffers();
}
void ComputeAndGraphics::cleanupSwapChain() {
vkDestroyImageView(_device, _depthImageView, nullptr);
vkDestroyImage(_device, _depthImage, nullptr);
vkFreeMemory(_device, _depthImageMemory, nullptr);
for (auto framebuffer : _swapChainFramebuffers) {
vkDestroyFramebuffer(_device, framebuffer, nullptr);
}
for (auto imageView : _swapChainImageViews) {
vkDestroyImageView(_device, imageView, nullptr);
}
vkDestroySwapchainKHR(_device, _swapChain, nullptr);
}
void ComputeAndGraphics::cleanPipeline()
{
vkDestroyPipeline(_device, _graphicsPipeline, nullptr);
vkDestroyPipelineLayout(_device, _pipelineLayout, nullptr);
vkDestroyPipeline(_device, _computePipeline, nullptr);
vkDestroyPipelineLayout(_device, _computePipelineLayout, nullptr);
}
void ComputeAndGraphics::cleanBuffers()
{
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
vkDestroyBuffer(_device, _shaderRawStorageBuffers[i], nullptr);
vkFreeMemory(_device, _shaderRawStorageBuffersMemory[i], nullptr);
vkDestroyBuffer(_device, _shaderTransformedStorageBuffers[i], nullptr);
vkFreeMemory(_device, _shaderTransformedStorageBuffersMemory[i], nullptr);
}
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
vkDestroyBuffer(_device, _uniformBuffers[i], nullptr);
vkFreeMemory(_device, _uniformBuffersMemory[i], nullptr);
}
vkDestroyBuffer(_device, _indexBuffer, nullptr);
vkFreeMemory(_device, _indexBufferMemory, nullptr);
vkDestroyBuffer(_device, _vertexBuffer, nullptr);
vkFreeMemory(_device, _vertexBufferMemory, nullptr);
}
void ComputeAndGraphics::cleanSyncObjects()
{
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
vkDestroySemaphore(_device, _renderFinishedSemaphores[i], nullptr);
vkDestroySemaphore(_device, _imageAvailableSemaphores[i], nullptr);
vkDestroyFence(_device, _inFlightFences[i], nullptr);
vkDestroySemaphore(_device, _computeFinishedSemaphores[i], nullptr);
vkDestroyFence(_device, _computeInFlightFences[i], nullptr);
}
}
void ComputeAndGraphics::cleanBase()
{
vkDestroyDevice(_device, nullptr);
vkDestroySurfaceKHR(_instance, _surface, nullptr);
if (enableValidationLayers) {
DestroyDebugUtilsMessengerEXT(_instance, _debugMessenger, nullptr);
}
vkDestroyInstance(_instance, nullptr);
glfwDestroyWindow(_window);
glfwTerminate();
}
void ComputeAndGraphics::cleanDescriptors()
{
vkDestroyDescriptorPool(_device, _descriptorPool, nullptr);
vkDestroyDescriptorSetLayout(_device, _descriptorSetLayout, nullptr);
vkDestroyDescriptorPool(_device, _computeDescriptorPool, nullptr);
vkDestroyDescriptorSetLayout(_device, _computeDescriptorSetLayout, nullptr);
}
void ComputeAndGraphics::cleanup()
{
cleanupSwapChain();
vkDestroySampler(_device, _textureSampler, nullptr);
vkDestroyImageView(_device, _textureImageView, nullptr);
vkDestroyImage(_device, _textureImage, nullptr);
vkFreeMemory(_device, _textureImageMemory, nullptr);
cleanDescriptors();
cleanBuffers();
cleanSyncObjects();
vkDestroyCommandPool(_device, _commandPool, nullptr);
cleanPipeline();
vkDestroyRenderPass(_device, _renderPass, nullptr);
cleanBase();
}